

CFD Analysis of a MILD Low-Nox Burner for the Oil and Gas industry

Alessandro Atzori

Supervised by: Vincent Moreau

Framework: Industria 2015

Bill on competitiveness and industrial policy, approved on 22 September of 2006 by the Italian Ministry of Economic Development.

MILD Technology Integration in innovative combustion system characterised by low emissions

Steam Generator for electricity generation: realization of a 30 MWth multi fuel burner (oil-gas) SOFINTER-Macchi Boilers S.p.a.

74	F3	RI	Development of the boiler natural gas fuelled 3D hot MILD burner model	CRS4
75	F4	RI	Development of the boiler oil fuelled 3D hot MILD burner model	CRS4
76	F5	RI	Numerical functional optimisation of the MILD burner for boiler	CRS4

Why do we care?

U.S Net Electricity Generation by Fuel, 2010

World Net Electricity Generation by Fuel (trillion kilowatt-hours)

Source: US Energy Information Administration, Electric Power Monthly, Table 1.1 (March 2011), preliminary data. Source: US Energy Information Administration, International Energy Outlook 2010 – Highlights

MILD: Moderate and Intensive Low oxygen Diluted

Standard Combustion

<600 900 1200 1500 1800 2100°C

Flameless Combustion

<600 900 1200 1500 1800 2100°C

Flameless vs. Flame

In flameless mode, reactions take place at temperatures above the self-ignition temperature, in a distributed large volume instead of being concentratedinto a thin, highly convoluted and stretched flame front . With flameless combustion, there is no flame front, no visible flame, no UV or ionisation detection, and no noise or roar. This translates into:

- higher combustion efficiency (~30%)
- more homogeneous temperature distribution
- reduced thermal stress for the burner
- reduction in nitrogen oxide emissions (ten times less)
- reduction in soot

Macchi Mars I: what we had

0 690

------ Orginal Message ExbjectR: disegn Touciatore MARS I Date Fri, 21 May 2010 14/25/33 90200 Form Morandi Lorenzo Scienzo monardi@macchibolier.ib-Form Morandi Lorenzo Scienzo monardi@macchibolier.ib-To Vincent Morani <u>comorang@ctrid.ib-</u> CC Emeste Boroni <u>comorang@ctrid.ib-</u> Calemase Boroni <u>comorang@ctrid.ib-</u> Nadimir Zimont <u>czimont@ctrid.ib-</u> Caro Dott. Moreau, Sono felice di fare la sua conoscenza anche se solo per e-mail. Ho potuto osservare gli screenshots che mi ha inviato e devo dire che il modello del bruciatore appare molto dettagliato. Oltretutto non mi s vedere quale dettaglio riuscirà a mantenere nella geometria di calcolo, visto che i conti che abbiamo eseguito noi a suo tempo erano senz'alt Per quanto concerne la geometria della cassa d'aria e della camera di combustione le allego dei disegni anche se penso che l'Ing. Saponaro si tenute presso il CCA di Gioia del Colle...Sono sicuro che l'equipe del CCA sarà in grado di formirle ogni dettaglio. massimo carico del bruciatore, faccia riferimento alle seguenti indicazioni. Portata Gas Naturale 3650 Nn 3/h Densità Gas Naturale Pressione al collettore principale Pressione allo stabilizzatore kg/Nm3 barg 0.8 1.2 0.4 barg Protata aria comburente Temperatura aria comb. 02 dry analiz siemens Delta P bruciatore 47.8 T/h 37 ° °℃ 2.5% 190 nn H20 Temperatura fumi uscita camera 1200 °C o di essere stato esaustivo nelle mie risposte odo non esiti a contattarmi per ulteriori informazioni Cordiali saluti P.S.e un grande saluto al Prof. Zimont

To simulate the compressible reacting flow field in the boiler by combining HPC and a state of the art CFD solver.

To validate the simulation by comparison with the data provided by the manufacturer.

Identify a process to implement to have a detailed description of the behaviour of the burner in the furnace (problem breakdown).

How we did proceed

How is an industrial burner for boilers made?

Macchi Mars I: What we had.

Date:Fri, 21 May 2010 14:25:33 +0200 From:Morandi Lorenzo <u><lorenzo.morandi@ma< u=""> To:Vincent Moreau <u><moreau@crs4.it></moreau@crs4.it></u> CC:Ernesto Bonomi <u><ernesto@crs4.it></ernesto@crs4.it></u>, Vlac</lorenzo.morandi@ma<></u>	acchiboiler.i dimir Zimont	t≥ ∶ <zimont@< th=""><th>@crs4.it≥, ≤alessi</th><th>indro.saponaro@ansaldoboiler.it></th></zimont@<>	@crs4.it≥, ≤alessi	indro.saponaro@ansaldoboiler.it>
Caro Dott. Moreau,				
Sono felice di fare la sua conoscenza	anche se	solo pe	er e-mail.	
Ho potuto osservare gli screenshots c vedere quale dettaglio riuscirà a man	he ∎i ha tenere ne	inviato lla geor	e devo dire (metria di calo	he il modello del bruciatore appare molto dettagliato. Oltretutto non mi s colo, visto che i conti che abbiamo eseguito noi a suo tempo erano senz'alt
Per conto concerne le geometria della tenute en la ccA di Giola del con	a cassa d	'aria e	della camera	di combustione le allego dei disegni anche se penso che l'Ing. Saponaro si del CCA sarà in grado di fornirle ogni dettaglio.
Riguardo alle condizioni al contorno	generali,	riferi	te al massime	apica del housistere -foccio riferimente elle comunati indicazioni
Portata Gas Naturale		3650	Nm3/h	
Densità Gas Naturale		0.8	kg/Nm3	
Pressione al collettore principale		1.2	barg	
Pressione allo stabilizzatore	0.4	barg		
Protata aria comburante		47.9.7	E /b	
Temperatura aria comb		37	°C	
		2.5%	-	
02 dry analiz siemens		190	nn H20	
02 dry analiz siemens Delta P bruciatore				•
02 dry analiz siemens Delta P bruciatore Temperatura fumi uscita camera	1200 °	с		
02 dry analiz siemens Delta P bruciatore Temperatura fumi uscita camera	1200 °	c		

P.S.

....e un grande saluto al Prof. Zimont

Component		Italian	Dutch	Russian	Algerian	Libyan			
Volume composition (%)									
Methane	CH₄	99,63	89,44	93,27	83,69	74,15			
Ethane	C_2H_6	0,07	3,28	3,32	7,60	13,27			
Propane	C₃H ₈	0,04	0,69	0,83	1,86	2,60			
N-Butane	C_4H_{10}		0,29	0,37	0,38	0,13			
Iso Butane	C_4H_{10}				0,26	0,13			
N-Pentane	C_5H_{12}		0,09	0,15	0,08	0,01			
Isopentane	C_5H_{12}				0,07	0,01			
Esane	C_6H_{14}			0,15	0,08				
Hydrogen	H_2					7,08			
Helium	He				0,17				
Carbon Diox.	CO ₂	0,01	0,70	1,00	0,18	1,50			
Nitrogen	N_2	0,25	5,51	0,91	5,63	0,45			
Other						0,67			
Heating Val	ue (kc	al/Sm³)							
HHV		9005	8866	9365	9400	9700			
LHV		8108	7996	8450	8500	8768			
Density (kg/	/Sm³)	0,682	0,752	0,742	0,790	0,778			

Natural Gas Flow Rate: 3650 Nm³/h Natural Gas Density: 0.8 kg/Nm³ Pressure Drop at Collector: 1.2 barg

Air Flow Rate: 48 Tons/h Air Flow Temperature: 37°C

O₂ dry analysis: 2.5% Flue Out Temperature: 1200°C

Simulated mixture (in volume):

Methane $CH_4 85\%$, Ethane $C_2H_6 6\%$, Nitrogen $N_2 9\%$.

Table 2: Composition of natural gas imported in Italy [2].

CAD model of the burner from 2D sketches

Injection system and recirculation

Simplified geometry to study the injection system

200000 cells

RANS Steady State Realizable k-epsilon

Non Reacting

Under expanded exit of the natural gas at the nozzle

Reacting Flow + Radiation Modeling for a single lance

Hybrid EBU (mixed is burned + kinetics)

Participating Media Radiation, OPL=4.2m gray gas (emissivity is constant for all the wavelength)

Radiation accounts for 80% of the Heat Flux!

Reacting Flow + Radiation Modeling for a single lance

Reacting Flow + Radiation + Gravity (Half Furnace)

Half Furnace: Mass and Energy Balance

	CH_4	C_2H_6	CO_2	H_2O	O_2	\mathbf{N}_2
Mass Flow [kg/s]	6.00E-008	5.40E-004	9.59E-001	7.61E-001	1.62E-001	5.110
Mass Fraction	8.57E-009	2.45E-005	1.36E-001	1.08E-001	2 40E-002	0.728
Volume Fraction	0.000	0.000	0.086	0.167	0.0204	0.725
Table 4: <i>Mixture cor</i>	nponents at t	ne exit.				
Table 4: <i>Mixture cor</i>	nponents at th	ne exit.	22			
Table 4: <i>Mixture cor</i>	CH ₄	C_2H_6	CO ₂	H ₂ O	O ₂	N
Table 4: <i>Mixture cor</i> Mass Flow [kg/s]	CH ₄ 2.76E-004	C ₂ H ₆ 5.73E-006	CO ₂ 3.19E-001	H ₂ O 2.54E-001	O ₂ 5.43E-007	N 1.700
Table 4: <i>Mixture cor</i> Mass Flow [kg/s] Mass Fraction	CH4 2.76E-004 1.18E-004	 C₂H₆ 5.73E-006 2.45E-006 	CO ₂ 3.19E-001 1.36E-001	H ₂ O 2.54E-001 1.08E-001	O ₂ 5.43E-007 2.40E-802	N 1.700 0.728

Table 5: Mixture components at the exit for the single lance case.

	Power (kW)
Air Inlet	-75.81
Adiabatic wall	0
Injectors	1560.48
Burner	0
Symmetry	0
Heat Exchanger	6432.72
Pressure Outlet	<u>-7895</u> .83
Total	21.56

Table 7: Power exchange at boundaries (fuel mass flow rate 0.4045 kg_c/s).

Reacting Flow + Heat Exchange + Gravity + Nox (Furnace)

Furnace: Mass and Energy Balance

kg/s	Mass Flow	С	Н	0	Ν
In	14.079	5.28E-001	1.70E-001	1.53E+000	10.29E+00
Out	14.078	5.28E-001	1.70E-001	1.53E+000	10.29E+00
Difference %	0.0	0.0	0.0	0.0	0.0

Table 8: Total mass and single species balance for the entire furnace.

	CH ₄	C_2H_6	CO_2	H_2O	O ₂	\mathbf{N}_2
Mass Flow [kg/s]	5.68E-010	1.58E-003	1.92E-000	1.53E-000	3.33E-001	10.300
Mass Fraction	0	1.1E-004	1.36E-001	1.08E-001	2.38E-002	0.728
Volume Fraction	0.000	0.000	0.086	0.167	0.0205	0.725

Table 9: *Mixture components at the exit.*

	Power (kW)
HHV_d (Gaur and Reed 1995)	38085
HHV_{p} (Gaur and Reed 1995)	34495
Chemical heat Release (Volume Integral)	34530

Table 10: Fuel HHV and volume enthalpy (fuel mass flow rate 0.81 kg $_{c}$ /s).

Boiler 30MWth!

Nox Emission

"MACCHI BOILERS and BURNERS, thanks to new Burner technology, have achieved successful operation handed over a Boiler rated 335 t/h, 28 barA, 235°C with NOx emissions certified at 14 ppm at Ras Abu Fontas, Qatar" (SOFINTER-Website)

Our result: at the stack ~ 1 ppm

Flue Gas Recirculation

Temperature of sampling points

Our result for the single injector with air at 1200K: T= 510K

Flue Gas Recirculation Temperature

Temperature stratification due to gravity effects at flue recirculation inlet: $\Delta T \sim 30 K$

Transient (URANS & DES)

Recirculated Gas/ Flow In

But time of residency in the furnance ~ 14 s!

Movie 1: Streamlines

Streamlines.avi

The movie shows the flow strealmlines coloured with temperature scalars for a steady state RANS simulation.

Highest temperatures in red.

Movie 2: Pressure Waves in the Lance

Pressurewave.avi

The movie shows the pressure waves propagating in the lances due to the injection of the natural gas.

URANS simulation. Time step 1 ms.

Iso-Q surfaces coloured with O₂ mass fraction.

Movie 3: Swirl

Swirl.avi

The movie shows iso surfaces of O_2 mass fraction and the reacting flow swirling.

Detached Eddy Simulation (DES). Time step 1 ms.

Movie 4: Flow Temperature

FlowTemperature.avi

The movie shows the contours of temperature in the furnace.

Detached Eddy Simulation (DES). Time step 1 ms.

Conclusions

CFD simulations are in good agreement with the theoretical, experimental and numerical results found for the field variables.

Star-CCM+ is a robust and reliable integrated CFD platform for the simulation of a compressible, reacting, non-adiabatic flow field.

Our problem breakdown is suitable for the simulation of the boiler fuelled by natural gas with the MILD burner implementation (74-F3-RI Industia 2015).

Behaviour of the burner feeded with oil can be determined if data from the manufacturer is provided (75-F4-RI Industia 2015). Numerical functional optimization can be implemented by using in UDF in Star-CCm+ (75-F6-RI Industria 2015).

Thanks. Q&A?